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A B S T R A C T

This paper focuses on brain mitochondrial respiration as a therapeutic target for neuroprotection and

cognitive enhancement. We propose that improving brain mitochondrial respiration is an important

future direction in research and treatment of Alzheimer’s disease (AD) and other conditions associated

with cognitive impairment and neurodegeneration. The central thesis is that supporting and improving

brain mitochondrial respiration constitutes a promising neurotherapeutic principle, with potential

applications in AD as well as in a wide variety of neuropsychological conditions. We propose three

different interventional approaches to improve brain mitochondrial respiration based on (a)

pharmacology, (b) photobiomodulation and (c) nutrition interventions, and provide detailed examples

for each type of intervention. First, low-dose USP methylene blue is described as a pharmacological

intervention that can successfully increase mitochondrial respiration and result in memory

enhancement and neuroprotection. Second, transcranial low-level light/laser therapy with near-

infrared light is used to illustrate a photobiomodulation intervention with similar neurometabolic

mechanisms of action as low-dose methylene blue. Finally, a nutrition intervention to improve

mitochondrial respiration is proposed by increasing ketone bodies in the diet. The evidence discussed for

each intervention supports a fundamental neurotherapeutic strategy based on improving oxidative

energy metabolism while at the same time reducing the pro-oxidant tendencies of the nervous system.

Targeting brain mitochondrial respiration with these three types of interventions is proposed as part of a

holistic neurotherapeutic approach to improve brain energy metabolism and antioxidant defenses. This

strategy represents a promising new bioenergetics direction for treatment of AD and other

neuropsychological disorders featuring cognitive impairment and neurodegeneration.
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1. Introduction

Brain oxidative energy metabolism is a target to which
attention has only indirectly been devoted in neurotherapeutic
interventions, but it is suspected to have a large potential for the
implementation of effective treatments of brain diseases and for
enhancing normal cognitive functions. The paucity of neurother-
apeutic strategies targeting brain energy metabolism may be
explained not only by a lack of technology and pharmaceutical
resources to specifically enhance brain oxidative metabolism, but
also by failure to identify energy metabolism as one of the most
important processes in neuronal physiology. The brain has one of
the highest rates of energy demand in the body. Neurons have a
unique oxidative potential and heavily rely on an adequate supply
of oxygen and glucose to survive and maintain normal function. Of
all neuronal functions, active transport of ions against their
concentration and electrical gradients is by far the largest energy
consuming function of neurons [1]. Active ion transport restores
the plasma membrane potential after depolarization by activation
of the Na + K + ATPase pump [2]. In consequence, neuronal activity
and energy metabolism are tightly coupled [3]. In other words,
highly active neurons display high energy consumption and
formation. To achieve this, the intracellular metabolic machinery
that supports the generation of energy from oxygen and glucose is
abundantly expressed. The core of this metabolic machinery
resides in mitochondria, and within it, key components for energy
demand/production coupling are those in the electron transport
chain in the inner mitochondrial membrane, including cytochrome
oxidase. Mitochondria are central organelles in neuronal physiol-
ogy. They coherently integrate cell respiration, energy metabolism,
and calcium ion balance to support cell survival. Remarkably, a
single neuron is not metabolically homogeneous, but the neuronal
metabolic capacity, represented by mitochondrial content, is
highest in dendrites, intermediate in cell bodies and lowest in
axon trunks [3]. This subcellular compartmentalization of energy
reflects an adaptation to maximize efficiency in energy utilization,
so that energy is generated only when and where energy is needed.

Recent progress in our understanding of brain oxidative
metabolism has revealed discrete potential mitochondrial molec-
ular targets that may be used for neurotherapeutic purposes.
Effective cognitive enhancement and neuroprotection are two
clinical desirable outcomes that may be achievable by targeting
brain energy metabolism. Both seem a crucial unmet need in the
treatment, for example, of neurodegenerative diseases. Neurode-
generative disorders are heterogeneous, but they all feature
progressive neuronal atrophy and loss. The etiology of neurode-
generation in most cases is unknown, but it has been hypothesized
to be multifactorial, with both genetic and environmental
contributing factors. Whereas differential regional vulnerability
and distinct types and patterns of protein aggregation seem to
distinguish between neurodegenerative entities, universal fea-
tures of neurodegeneration include chronic and progressive cell
loss, atrophy and loss of function in specific brain systems. In
addition, mitochondrial failure has gained attention as a major
pathogenic event common to the broad spectrum of neurodegen-
erative disorders. Leber’s hereditary optic neuropathy (LHON)
appears as a model neurodegenerative disease caused by
mitochondrial failure. This relatively rare condition is produced
by specific mutations in NADH dehydrogenase, the entry enzyme
of the respiratory chain in mitochondria. As it is classical of
mitochondrial disorders, LHON follows a particular inheritance
pattern, affecting mainly young adult males. Nevertheless, its
expressivity is variable and its onset can occur during childhood or
in elder individuals [4]. On the other extreme of the neurodegen-
eration spectrum, Alzheimer’s disease (AD) appears as the most
common neurodegenerative disorder. It is mostly sporadic, and
Please cite this article in press as: Gonzalez-Lima F, et al. Mitocho
enhancement. Biochem Pharmacol (2013), http://dx.doi.org/10.1016
associated with advanced age and b-amyloid and tau accumula-
tion in the brain. In contrast to LOHN, in which the role of
mitochondrial dysfunction is widely acknowledged, the main-
stream hypothesis on the cause of AD puts little emphasis on the
potential role of mitochondrial dysfunction. While many believe
that the amyloid/tau pathogenic hypothesis will further our ability
to understand and treat AD, this view is not universal and alternate
pathogenic hypotheses exist.

A major alternate hypothesis supported by us [5] and others [6–
8] proposes mitochondrial dysfunction as a key pathogenic step,
not only in AD but also in other neurodegenerative conditions. The
mitochondrial hypothesis of neurodegeneration derives from the
observed relationship between mitochondrial durability (e.g.

efficiency, accumulation of mitochondrial DNA mutations) and
aging, which is believed by some groups to be causal [9]. Hence,
whereas the baseline mitochondrial function is determined by
gene inheritance, exposure to environmental factors, in turn
proportional to age, determine the rate of mitochondrial decline
[10]. The mitochondrial hypothesis of neurodegeneration also
predicts that mitochondrial failure precedes synaptic dysfunction,
protein aggregation, atrophy and loss of function. Mitochondrial
failure has been linked to known major pathogenic aspects of
neuronal dysfunction associated with neurodegeneration, includ-
ing excitotoxicity [11], abnormal protein aggregation [12],
neuroinflammation [13] and oxidative stress [14]. Specific
evidence supporting the primordial role of mitochondrial dys-
function in AD include (1) decreased ATP, reduced basal oxygen
consumption, decreased NAD+/NADH ratios, increased oxidative
stress, pervasive mitochondrial depolarization, altered calcium
homeostasis and increased b-amyloid production in cell cultures
after AD and mild cognitive impairment (MCI) subject mitochon-
drial transfer [15]; (2) reduced cytochrome oxidase activity in AD
subject platelets and brains [16,17]; (3) correlation between
disease duration and cytochrome oxidase activity in the posterior
cingulate cortex, a region showing hypometabolic changes in
preclinical stages of dementia [18]; and (4) consistent early
selective brain hypometabolism that precedes cognitive decline in
AD, underlies synaptic dysfunction and occurs in brain regions
with higher synaptic activity, including multimodal cortical
network hubs [19]. Defects in energy metabolism are a constant
in the pre-clinical stages of dementia. For example, cognitively
normal individuals with a family history of late onset AD, in
particular individuals with a maternal history of AD, have a
progressive reduction in glucose metabolism on FDG-PET in the
posterior cingulate, parieto-temporal, and medial temporal
regions. These regions are affected in patients with clinical AD
and such changes are more significant than those seen in
individuals with a paternal or negative family history of AD
[20]. Notably, this evidence has led to a recent revision of a popular
pathogenic model for AD to now include energy metabolic failure
as one of the earliest steps in the natural history of the disease [21].
Similarly, early metabolic changes preceding neuronal atrophy
have been observed in patients with parkinsonism [22,23] and
Huntington’s disease [24]. Since mitochondrial bioenergetics plays
a central role in neuronal function and survival, it can be
hypothesized that the putative heterogeneous etiologic factors
of neurodegeneration may find in mitochondria points of
vulnerability for structural and functional neuronal integrity.

Based on a growing body of data discussed below, targeted
manipulations of mitochondrial respiratory function seem to be
the next logical step in attempts to design effective therapeutic
interventions against neurodegeneration, including AD. Neverthe-
less, as more is learned about the metabolism of the nervous
system, it becomes evident that the oxidative bioenergetics’
particularities of the brain would demand consideration of so far
non-conventional strategies of neuroprotection and cognitive
ndrial respiration as a target for neuroprotection and cognitive
/j.bcp.2013.11.010
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Fig. 1. Pharmacology, photobiomodulation and nutrition interventions proposed to improve neuropsychological outcome by increasing brain mitochondrial respiration. The

first intervention uses a pharmacological approach with low-dose USP methylene blue. The second intervention involves transcranial low-level light/laser therapy with near-

infrared light as a photobiomodulation approach with similar neurometabolic mechanisms of action as low-dose methylene blue. Finally, a nutrition intervention producing

ketogenesis is proposed by increasing ketone bodies in the diet. The three different interventions converge biochemically on the same target by successfully increasing

mitochondrial respiration. The neurometabolic mechanisms mediating the increase in mitochondrial respiration involve elevations in oxidative energy metabolism and

antioxidant defenses. These neurometabolic actions will in turn result in neuroprotection and cognitive enhancement. These interventions are readily bioavailable to the

brain, but at the same time selective at affecting those neuronal networks that require metabolic support. Detailed mechanistic rationale and evidence-based applications for

each type of intervention are described in the text.
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enhancement. The ideal intervention should target the mitochon-
drial energetic machinery, be readily bioavailable to the brain, but
at the same time selective at affecting those neurons or networks
that require support, thus contributing to minimization of
undesired side effects. We propose here three such interventional
approaches based on specific pharmacology, photobiomodulation

and nutrition interventions (Fig. 1), and provide below detailed
mechanistic rationale and evidence-based applications for each
type of specific intervention.

2. Pharmacology intervention with low-dose USP methylene
blue

There is a growing consensus that the energy failure and
oxidative stress produced by dysfunction of mitochondrial
respiration play a key role in the pathogenesis of neurodegenera-
tive illnesses [25]. Hence interventions that are aimed at
preventing these early mitochondrial events may efficaciously
treat neurodegeneration. Numerous animal models have been
used successfully to demonstrate the efficacy of pharmaceutical
grade (USP) methylene blue (MB) as a mitochondrial neuropro-
tective intervention (reviewed in Rojas et al.) [26]. MB (IUPAC
name: [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylaza-
nium chloride; CAS number: 97130-83-1; common synonyms:
methylthioninium chloride, chromosmon, basic blue 9) is a potent
redox diaminophenothiazine with high bioavailability to mito-
chondria and autoxidizable properties that supplement the action
of ubiquinone as an electron carrier in the respiratory chain.
Therefore, MB’s potent redox action and unique auto-oxidazible
properties make it suitable for improving mitochondrial respira-
tion and for use as an intervention against neurodegeneration. MB
Please cite this article in press as: Gonzalez-Lima F, et al. Mitocho
enhancement. Biochem Pharmacol (2013), http://dx.doi.org/10.1016
is already an FDA-approved drug routinely prescribed as an
antidote for the treatment of poison-induced methemoglobinemia
due to its powerful antioxidant properties [27]. MB readily crosses
the blood–brain barrier and has great affinity for mitochondria, a
property that has allowed the use of MB as a redox indicator and
supravital stain of nervous tissue [28,29].

2.1. Neurometabolic mechanisms of low-dose USP methylene blue

Low-dose MB can act in mitochondria as a radical-scavenging
antioxidant, by trapping radicals produced by dysfunctional
respiratory chain components before they reach other cellular
targets. But low-dose MB is not only a potent antioxidant. Due to its
auto-oxidizable activity, low-dose MB can also act as a metabolic
enhancer by bypassing blocked points of electron flow in the
respiratory chain and thus improving mitochondrial respiration
[30,31]. MB’s mitochondrial action is unique because its neurobi-
ological effects are not determined by regular drug–receptor
interactions or drug–response paradigms. MB shows a hormetic
dose–response, with opposite effects at low and high doses [32]. At
low doses of 0.5–4 mg/kg, MB is an electron cycler in the
mitochondrial electron transport chain, with unparalleled antiox-
idant and cell respiration-enhancing properties that affect neural
function in a versatile manner. The unique auto-oxidizing property
of MB and its pleiotropic effects on a number of tissue oxidases
explain its potent neuroprotective and metabolic effects at low
doses. A major role of the mitochondrial respiratory enzyme
cytochrome oxidase on the neuroprotective and cognitive-
enhancing effects of MB is supported by available data [26].

Low-dose MB does not affect the nitric oxide-guanylyl cyclase
system as high-dose MB, but low-dose MB’s auto-oxidizing
ndrial respiration as a target for neuroprotection and cognitive
/j.bcp.2013.11.010
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property acts as an electron cycler that allows MB to redirect
electrons to the mitochondrial electron transport chain, thereby
enhancing ATP production and promoting cell survival [26]. In
bypassing complex I–III activity to generate ATP, low-dose MB
reduces reactive oxygen species (ROS) production from the
mitochondrial electron transport chain, which has the potential
to minimize AD physiopathology [5]. Low-dose MB’s antioxidant
property is thus unique. Therefore, we hypothesized that MB’s
mechanism of neuroprotection is mediated by support of
mitochondrial function via its powerful in situ antioxidant effects
and its mitochondrial respiration-enhancing properties. For
example, in a model of mitochondrial optic neuropathy, rotenone
produced a noticeable loss of ganglion cell bodies and optic nerve
fibers (reviewed in Rojas and Gonzalez-Lima) [4]. But MB co-
administration prevented these changes [33,34]. MB’s neuropro-
tective effects in this model were also demonstrated at the
functional level, inducing preservation of visual function, as
measured by neurometabolic and behavioral parameters. Our
research with MB in the model of optic neuropathy supports the
concept that in the presence of complex I inhibition, stimulation of
the electron transport chain paired with free radical-scavenging is
highly efficacious at preventing the neurodegenerative effects of
mitochondrial dysfunction. Numerous in vitro and in vivo studies
spanning over 50 years have firmly established that low-dose MB
enhances cytochrome c oxidase (complex IV) activity, oxygen
consumption, cerebral blood flow, brain glucose utilization and
ATP production in cells while simultaneously reducing oxidative
stress [33,35–37].

2.2. Neurotherapeutic applications of low-dose USP methylene blue

MB – widely used to treat methemoglobinemia and cyanide
poisoning – has recently been shown to have multiple positive
therapeutic effects in reducing neurological impairment and
enhancing cognitive measures [38]. Low-dose MB has important
implications as a new treatment to improve cognitive outcome and
neurodegeneration associated with AD. Low doses of MB have also
been used for neuroprotection against mitochondrial dysfunction
in humans and experimental models of disease, including
metabolic encephalopathy, optic neuropathy, cardiac arrest-
induced brain damage, striatal neurodegeneration, and stroke
[26]. For example, MB has been shown to reduce neurobehavioral
impairment in animal models of mitochondrial optic neuropathy
[33,34], AD [39–41], Parkinson’s disease (PD) [38,42], Huntington’s
disease (HD) [43] and nerve injury [44]. The evidence supports a
mechanistic role of low-dose MB as a promising and safe
intervention for improving the cognitive rehabilitation of condi-
tions characterized by increased oxidative stress, neurometabolic
compromise and behavioral impairment.

In addition to neuroprotection, MB’s effects have been
associated with improvement of memory and behavior in a
network-specific and practice-dependent fashion. Specifically,
low-dose MB has shown cognitive-enhancing effects in a
considerable number of learning and memory paradigms, includ-
ing: inhibitory avoidance, spatial memory, fear extinction, object
recognition, open-field habituation and discrimination learning
[26]. MB also rescues memory function in models of amnestic MCI
induced by mitochondrial dysfunction [45], anticholinergics [46],
systemic cytochrome oxidase inhibition [47] and transgenic mouse
models of Tau and amyloid-associated pathologies [41,40].
Moreover, a single 4 mg/kg and daily 1 mg/kg intraperitoneal
MB doses improve learning and memory in animals by long-lasting
upregulation of brain cytochrome c oxidase activity [26,35,48–50].
In particular, animals treated with low-dose MB showed larger
fMRI responses and cerebral O2 consumption changes compared to
vehicle-treated rats, under normoxia and hypoxia conditions [51].
Please cite this article in press as: Gonzalez-Lima F, et al. Mitocho
enhancement. Biochem Pharmacol (2013), http://dx.doi.org/10.1016
These findings support the notion that low-dose MB is a brain
metabolic energy enhancer in vivo [52].

MB is an FDA-grandfathered drug that has already been
rigorously studied and used in humans for over 120 years. PubMed
lists 4908 human studies of MB (searched 2013). MB’s pharmaco-
kinetics, side effect profile, and contraindications are well-known
and most importantly, minimal in humans [28,53]. MB has been
used in parathyroid surgery to aid in lymphatic mapping since the
early 1970s at doses of 3.5–10 mg/kg. A safety announcement from
the FDA warned physicians about possible serious serotonin
reactions in patients who received intravenous MB during
parathyroid surgery if taking serotonergic psychiatric drugs. A
subsequent report by Mayo Clinic surgeons and pharmacologists
summarized the FDA evidence and literature and concluded ‘‘that
the use of methylene blue dye at low doses for lymphatic mapping
likely carries very little risk for serotonin neurotoxicity’’ [54].
Furthermore, none of the FDA cases are based on oral MB. Daily
300 mg oral MB (4.28 mg/kg/day based on a body weight of 70 kg)
has been used safely for one year in clinical trials [55]. Thus, low-
dose MB has a long history of safe usage that supports its
translational relevance to human populations.

Especially important is the burden of cognitive decline in the
aging population, including those at risk for developing MCI and
AD, since these conditions are expected to reach unparalleled
endemic proportions. Interestingly, the brains and peripheral
tissues of patients affected by MCI and AD display a prominent
cytochrome oxidase inhibition within the mitochondrial respira-
tory chain [56,57]. Cytochrome oxidase has a key role in neuronal
activity as a rate-limiting enzyme for oxidative energy production
in the mitochondrial electron transport chain [58,59] and it also
can catalyze the production of nitric oxide under hypoxic
conditions [60]. Since memory functions are extremely sensitive
to oxidative energy deficits, cytochrome oxidase inhibition linked
to aging and impairment in cerebral perfusion [61–63] has long
been recognized as a major pathophysiological mechanism
underlying memory dysfunction and neurodegeneration in AD
that is present prior to AD onset [5]. Fortunately, brain cytochrome
oxidase activity can be modulated by MB in a hormetic dose-
response manner [32]. MB’s hormetic dose-response consists of an
increase in beneficial effects at low doses, followed by opposite
(detrimental) effects at high doses, while at intermediate doses the
effect is equal to a control-type effect. Therefore, high MB doses
should be avoided because low-dose MB interventions induce the
maximal pharmacologic beneficial effects on mitochondrial
respiration and cytochrome oxidase activity, which correspond
to 30–60% increases compared to control [32].

Whether a beneficial use of low-dose MB in aging populations
may be generalized to treat MCI and early AD patients should be
investigated. For example, a research group garnered a great deal
of media attention after a 2008 Alzheimer’s Association interna-
tional conference where they presented preliminary data using MB
in a study showing that low-dose MB prevented cognitive
deterioration in AD patients. Using the trade name of RemberTM,
and the MB synonym methylthioninium chloride, MB was given
orally at 60 mg three times a day (a low dose of 2.57 mg/kg/day
based on a body weight of 70 kg) for 24 months to patients with
mild to moderate AD [64]. There was an 81% reduction in the rate of
cognitive decline compared to controls after 50 weeks. This is an
effect that, if reproducible, would be without precedent in
pharmacological interventions against AD. But data from this
abstract and meeting presentation should be regarded as prelimi-
nary since it has not been published after a peer-reviewed process.
The authors suggested that the cognitive benefit of MB on AD
patients was linked to prevention of Tau aggregation, based on
prior in vitro studies with high-dose MB [65]. Since MB improves
cognition only at low doses, while it prevents Tau aggregation only
ndrial respiration as a target for neuroprotection and cognitive
/j.bcp.2013.11.010
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at high doses, it is more likely that low-dose MB is acting via

mitochondrial respiration mechanisms for neuroprotection and
cognitive enhancement, as proposed here (Fig. 1). An important
point that the research with the animal model of optic neuropathy
demonstrated is that MB is able to prevent neuronal loss in a model
of degeneration not mediated by Tau or b-amyloid deposition [4].
Therefore, these animal studies suggest that the neuroprotective
mechanism of action of low-dose MB is related to enhancement of
mitochondrial respiration and to its powerful antioxidant effect in
the presence of a mitochondrial respiration inhibitor. This further
suggests that prevention of oxidative stress and enhancement of
mitochondrial respiration in vivo may be used to design new
metabolic drugs against neurodegenerative disorders. For exam-
ple, a number of phenothiazinic MB derivatives may share some of
its neurochemical and neuroprotective effects. MB derivatives
such as azure A, azure B or thionin vary in structure from MB by the
absence of one, two or three methyl groups [29]. But little if any
research data are available on the neuroprotective or cognitive
enhancing effects of these MB derivatives. These derivatives should
be screened for neuroprotective and cognitive effects because they
also share MB’s imino chemical group, which could support similar
neurometabolic effects on mitochondrial respiration [66].

3. Photobiomodulation intervention with low-level light/laser
therapy

In recent years, transcranial low-level light/laser therapy (LLLT)
has emerged as an intervention with potential to modulate
neuroprotective and cognitive functions. Transcranial LLLT can be
defined as the use of directional low-power and high-fluence
monochromatic or quasimonochromatic light from lasers or light-
emitting diodes (LEDs) in the red to near-infrared wavelengths
(l = 600–1100 nm) to modulate a neurobiological function or
induce a neurotherapeutic effect in a nondestructive and
nonthermal manner via stimulation of the respiratory enzyme
cytochrome oxidase [67]. LLLT is based on the principle that certain
molecules in living systems are able to absorb photons and trigger
signaling pathways in response to light. This process is termed
energy conversion, and implies that the molecule targeted by light
reaches an electronically excited state that temporarily changes its
conformation and function. In turn, this induces activation of
signaling pathways that affect cellular metabolism.

3.1. Neurometabolic mechanisms of low-level light/laser therapy

Molecules that can absorb light are called photoacceptors. A
chromophore is a particular moiety within a photoreceptor or
photoacceptor molecule that is responsible for the absorption of
light. Chromophores are usually organic cofactors or metal ions
within a protein structure and contain electrons that can be excited
from ground state to excited state. Excitation induces a molecular
conformational change that is linked to changes in molecular
function and intracellular metabolism. This redox reactivity of
chromophores may be structurally coupled to protein distortion,
allowing chromophore-containing enzymes to catalyze a very
efficient coupling of electromagnetic free energy flow to the
chemical energy flow of substrate conversion [68,69]. In the case of
LLLT for neurotherapeutic applications, the photoacceptor targeted
by near-infrared light is the mitochondrial enzyme cytochrome
oxidase, which contains four metal centers relevant for electron
transfer that act as chromophores. A wavelength range in the red to
near-infrared spectrum has been shown to be the most effective at
inducing beneficial biological effects. A ‘‘therapeutic window’’ for
clinical effects has been established since lower wavelengths such
as violet and ultraviolet appear to have poor tissue penetration, are
scattered in biological tissues and tend to be absorbed by melanin.
Please cite this article in press as: Gonzalez-Lima F, et al. Mitocho
enhancement. Biochem Pharmacol (2013), http://dx.doi.org/10.1016
Similarly, water significantly absorbs energy at wavelengths
higher than 1150 nm [70]. This therapeutic window is also
important because it contains the maximal peaks of absorbance
of cytochrome oxidase [71].

Transcranial energy doses delivered by LLLT are too low to
cause concerns about heating and tissue destruction, yet they are
high enough to modulate cortical cell functions. The effects of LLLT
implicate conversion of luminous energy to metabolic energy with
a subsequent modulation of the biological functioning of cells. An
evident requirement for a beneficial effect of LLLT is that the target
brain tissue should have an intact molecular substrate to support
or facilitate energy conversion. In addition, the effect of LLLT is
expected to be more biologically meaningful if it targets tissues
with an energetic balance inclined toward energy consumption as
opposed to energy production. The mechanism of action of LLLT
consists of primary effects and secondary effects. Primary effects
occur with light on, are immediate and depend on light absorption
by cytochrome oxidase. LLLT may act as an exogenous source of
highly energized electrons to the respiratory chain. Thus, LLLT
facilitates the catalytic activity of cytochrome oxidase, accelerates
the electron transfer in the inner mitochondrial membrane and
boosts cell respiration and energy production [67]. In turn,
secondary effects may occur with light off. Secondary effects are
always preceded by primary effects and they rely on the presence
of the intact intracellular molecular machinery. Secondary effects
are pleiotropic and depend on activation of enzymatic pathways
that affect metabolic capacity, gene expression for mitogenic and
repair signaling, cytoskeleton processing and protein expression
and translocation. Such secondary effects are triggered due to the
central role of mitochondria as integrators of energy metabolism,
cellular homeostasis and cell survival signaling [72]. For example,
LLLT has been shown to accelerate metabolism, DNA synthesis and
the replication rate in cultured fibroblasts [73]. Cells exposed to
LLLT in vitro demonstrate profiles of gene expression that support
improved cell metabolism, growth and survival [74].

3.2. Neurotherapeutic applications of low-level light/laser therapy

A large body of evidence supports the relevant beneficial effects
of LLLT in biological systems including the brain, and suggests that
LLLT has many potential neurotherapeutic applications [67]. In fact,
LLLT has been used to facilitate neurite outgrowth and there is
evidence supporting a role in facilitation of nerve regeneration [75].
Similarly, LLLT was found to prevent the deleterious effects of
neurotoxins in vitro, including mitochondrial inhibitors [76]. Several
studies support that LLLT enhances cytochrome oxidase expression
both in vitro [77] and in vivo [78], which is likely linked to a number
of neuroprotective effects of LLLT against mitochondrial toxins
observed in vivo. Preclinical studies support that LLLT may have a
role in the management of conditions associated with mitochondrial
failure such as methanol-induced retinopathy [79], Leber’s optic
neuropathy [78] and MPTP-induced toxicity model of PD [80].
Similarly, LLLT has been used to effectively reduce the functional
deficits induced by ischemia in pre-clinical models of stroke [81,82].
A crucial observation is that the great majority of neuroprotective
effects have been observed with transcranial delivery of LLLT. This
supports the potential use of LLLT as a non-invasive way to treat
neurological conditions, including AD. LLLT may be a convenient
neuroprotective intervention since light sources including lasers
and light emitting diodes have become portable, inexpensive and
with potential to offer ergonomic features facilitating close delivery
to the head. Regarding clinical effects in humans, it has been recently
documented that LLLT increases cerebral blood flow when applied
transcranially [83]. This effect was associated with no side effects
and with improvements in mood scores. A recent randomized,
placebo-controlled clinical trial provided proof-of-principle that
ndrial respiration as a target for neuroprotection and cognitive
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transcranial LLLT is able to enhance cognitive functions in healthy
human subjects [84]. Both of these human studies [83,84] used an
LLLT irradiance and cumulative fluency of 250 mW/cm2 and 60 J/
cm2, respectively. Rojas and Gonzalez-Lima recently summarized
the LLLT treatments of 27 transcranial and brain stimulation studies
which have shown effectiveness in providing neuroprotection and/
or cognitive enhancement [67]. Current clinical trials are in progress
for testing the role of LLLT in the management of depression
(NCT00961454), Leber’s optic neuropathy (NCT01389817) and
memory deficits in patients with traumatic brain injury and Gulf
War related illnesses (NCT01598532 and NCT01782378).

4. Nutrition intervention by increasing ketone bodies

Within the past decade the neurometabolic mechanisms and
neuroprotective effects of ketogenic diets and ketone bodies
supplementation have been revealed (for review Stafstrom and
Rho) [85]. The state of ketosis is a normal physiologic state that
occurs during fasting and carbohydrate restriction, and also
normally occurs in newborns. It is beneficial because it derives
energy from fatty acid oxidation that results in the formation of
ketone bodies. Importantly, some of the beneficial neurometabolic
effects of ketogenic diets may also be achieved without any
significant dietary restriction, by adding ketone bodies to the diet.
The main ketone bodies are beta hydroxybutyrate (BHB),
acetoactetate, and propanone. Historically, a therapeutic ketogenic
diet was formally constructed in 1921 as a way to achieve the
beneficial effects of fasting to treat epilepsy but soon fell to the
wayside when newer anticonvulsant drugs were discovered.
However, recent large controlled clinical trials have confirmed
the efficacy of ketogenic diets for the treatment of intractable
epilepsy in both children and adults. Outside of epilepsy, ketogenic
diets are now being investigated in a wide array of other
neurological diseases, including neurodegenerative diseases such
as AD [86]. We will focus here on the ability of ketone bodies to
enhance mitochondrial respiration, briefly mention other pleio-
tropic mechanisms, and illustrate the neuroprotective effects of
ketogenic diets and ketone bodies.

4.1. Neurometabolic mechanisms of physiological ketogenesis

The beneficial effects of ketogenesis are mediated by mecha-
nisms that fall into three broad categories: augmentation of
energy-dependent brain functions, decreased brain oxidative
stress and anti-apoptotic and other neuroprotective effects.
Models of normal physiology and aging serve to illustrate these
mechanisms. One mechanism by which the ketogenic diet
increases energy-dependent brain functions is by increasing
energy substrate availability. A classic study by Owen et al. [87]
showed that during prolonged fasting ketones can replace glucose
as the predominate fuel for brain metabolism. More recently an
animal study similarly showed that ketones provided by a
ketogenic diet can proportionately spare glucose utilization in
the central nervous system [88]. Ketogenic diets have also been
shown to increase the monocarboxylate transporter (MCT1) in the
endothelial lining of the blood–brain barrier, which resulted in an
increase of central nervous uptake of ketones as well as glucose
[89]. Another mechanism by which the ketogenic diet increases
energy-dependent functions is an increase in metabolic capacity.
Microarray analysis studies of animals on a ketogenic diet have
shown an increase in the transcripts involved in mitochondrial
respiration along with an increase in phosphocreatine and other
energy metabolites [90,91]. However no significant changes in
selected enzyme activities were found. Bough et al. [90] also found
increased mitochondrial biogenesis in the hippocampus of animals
placed on a ketogenic diet. These mechanisms are also seen in
Please cite this article in press as: Gonzalez-Lima F, et al. Mitocho
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animal models of aging. Aged animals fed a ketogenic diet show an
increased metabolic rate of acetoacetate and glucose as evidenced
by dual tracer PET studies [92]. Balietti et al. [93] have shown that a
medium-chain triglycerides supplemented ketogenic diet can
counteract the aging-related decrease in mitochondria and
increase mitochondrial metabolic efficiency.

Ketogenic diets have been shown to decrease brain oxidative
stress in normal animal models by multiple mechanisms. One
mechanism is the increase in endogenous antioxidants. For
example, Jarret et al. [94] showed that a ketogenic diet increased
mitochondrial levels of glutathione and lipoic acid (a thiol
antioxidant). The neurons in this study also showed increased
resistance to hydrogen peroxide-induced mtDNA damage [94].
One possible driver for these effects is increased nrf2 pathway
activation [95]. More recently, BHB has been shown to increase
global histone acetylation and increase oxidative stress resis-
tance factors FOXO3A and MT2, targets of which include
superoxide dismutase and catalase [96]. In rats, ketogenic diets
have been shown to increase uncoupling proteins which
decrease ROS production [97]. Ketogenic diets also show anti-
apoptotic and other neuroprotective effects in vivo. Obese rats
fed a ketogenic diet showed a down-regulation of pro-apoptotic
caspase 3 mRNA, in addition to decreased oxidative stress [98].
Ketogenic diets prevent age-related morphologic changes in the
outer molecular layer of the dentate gyrus in rats, but have
detrimental changes in CA1 [99]. Most of these changes are
hypothesized to preserve synaptic function and metabolic
energy supply.

Another emerging neuroprotective mechanism of the ketogenic
diet is an increase in kynurenic acid, which itself has neuropro-
tective, anti-excitoxic, and anti-inflammatory properties [100].
Ketogenic diets increase brain concentration of kynurenic acid,
which has implicated neuroprotective effects through NMDAR and
neprilysin [100,101]. The mechanism through which this happens
is not yet well understood. There is an increase in the actions of
kynurenine aminotransferases in cultured neurons with BHB but
this has not been confirmed in vivo [102]. Increased cellular
metabolism seems to increase kynurenic acid concentration and
this could be the mechanism by which ketogenic diets increase
kynurenic acid. This story parallels that of other neuroprotective
amino acid metabolites such as lanthionine ketimine, and its
bioavailable derivatives [103,104]. It is unknown if the ketogenic
diet has effects on these systems as well.

It is well established that in AD there are reductions in
mitochondrial enzyme activities involved in energy metabolism
including cytochrome oxidase, pyruvate dehydrogenase and
alpha-ketoglutarate dehydrogenase [5,17,18,105–107]. These
reductions have been found not only in brain tissue but also
platelets, muscle and fibroblasts of AD and MCI patients [5,108–
110,57]. Therefore, these reductions in mitochondrial respiratory
enzymes in peripheral tissues cannot be explained as conse-
quences of amyloid/tau pathology in the AD brain. One of the main
actions of ketones is that they provide an energy substrate that
bypasses the defects in cytochrome oxidase, pyruvate dehydroge-
nase and other electron transport chain enzymes. However a
reduction in alpha-ketoglutarate dehydrogenase would seem to
reduce the ability of a cell to utilize ketones because they are
utilized in the tricarboxylic acid cycle. But no studies thus far have
shown this inability. To the contrary, it seems that the ketogenic
diet upregulates enzymes involved in energy metabolism,
increasing the cell’s ability to utilize energy substrates [90].
Furthermore, addition of substances such as triheptanoin oil
increases the efficacy of the ketogenic diet by providing
tricarboxylic acid cycle intermediates [111]. This again supports
the assertion that increasing metabolic energy capacity would be
neuroprotective.
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4.2. Neurotherapeutic applications of physiological ketogenesis

Ketogenic diets may enhance mitochondrial energy-dependent
brain functions in AD and in a wide range of other neurological
disorders [85]. In human studies using patients with probable AD
and MCI, ketogenic interventions have shown improvements in
cognitive scores, such as verbal memory, ADAS-cog score, and
paragraph recall score [86,112–114]. These improvements corre-
lated positively with blood levels of BHB. In animal models of AD,
ketogenic interventions have shown improvements in learning and
memory [111,115,116], decreased measures of anxiety [115] and
improved mitochondrial function [117]. Zilberter et al. [118]
showed that supplementation with oxidative energy substrates
including BHB reverses early neuronal hyperexcitability in ex vivo

slices, reduced amyloid-beta-induced abnormal neuronal activity,
as well as improved metabolic energy deficiency. Ketogenic diets
have also been shown to decrease brain oxidative stress in the aged
dog, which is a model for AD. Studzinski et al. [117] found lower
levels of oxidative damage markers in the mitochondrial fraction of
parietal lobe tissue in aged dogs. Ketogenic diets have other
neuroprotective effects in models of AD. Multiple animal studies
using ketogenic diets and ketone esters have shown decreases in
the brain levels of amyloid precursor protein, tau, and b-amyloid
[115–117,119]. However, some studies find no changes in levels of
these proteins [120,121]. Zhang et al. [116] also found decreases in
brain atrophy and a decrease in brain expression of ApoE and
caspase 3.

Ketogenic diets have also been shown to enhance mitochon-
drial energy-dependent brain functions in other neurodegenera-
tive diseases such as PD, HD and amyotrophic lateral sclerosis
(ALS). A small pilot study of a ketogenic diet in PD patients showed
an improvement in Unified Parkinson’s Disease Rating Scores, with
patients reporting improvement in symptoms including resting
tremor, freezing, balance, gait, mood, and energy levels [122].
However placebo effects were not ruled out. In an animal model of
ALS, a medium-chain triglycerides supplemented diet slowed the
progression of weakness and decreased spinal cord motor neuron
loss [123]. This study also showed an increased basal and maximal
mitochondrial oxygen consumption rate, an indication of improve-
ment in mitochondrial respiratory capacity [124]. A ketogenic diet
in an animal model of HD showed improvement in working
memory and delayed weight loss [125]. Infusion of BHB in an
animal model of HD attenuated motor deficits, and extended
lifespan [126]. The same study also found that the ketogenic diet
reduced striatal lesions and microgliosis, and prevented histone
deacetylation. Ketogenic diets decrease brain oxidative stress in
other neurodegenerative disease models. In an animal model of PD
a ketogenic diet promoted neuronal survival and increased levels
of reduced glutathione [127]. Ketogenic diets show anti-apoptotic
and other neuroprotective effects in other neurodegenerative
diseases. Ketogenic diets in animal models of PD show improved
neuronal and mitochondrial survival, decreased microglial activa-
tion and decreased inflammatory cytokines [127,128]. In an animal
model of ALS, a ketogenic diet prevented the decrease in motor
neuron count [123].

Ketogenic diets in animal models of traumatic brain injury (TBI)
increase energy-dependent brain functions. In animal models of
TBI, a ketogenic diet has shown beneficial motor effects in young
animals, a restoration of brain ATP and increased brain levels of
creatine and phosphocreatine [129,130]. An infusion of BHB in an
animal model of TBI also restored brain ATP levels [131]. The
ketogenic diet also appears to prevent apoptosis in animal models
of TBI. A ketogenic diet reduced contusion volume [131,132] and
brain edema [133,134]. In another animal model of TBI, a ketogenic
diet increased mRNA and protein levels of BAX, an anti-apoptotic
protein, and reduced release of cytochrome c [133,134].
Please cite this article in press as: Gonzalez-Lima F, et al. Mitocho
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Ketogenic diets have also been shown to increase energy-
dependent brain functions in animal models of hypoxia/ischemia,
glutamate toxicity, and multiple sclerosis (MS). In an animal model
of hypoxia, BHB infusion maintained brain ATP levels and lowered
lactate levels [135]. In an animal model of MS, a ketogenic diet has
been shown to improve motor disability and spatial learning and
memory [136]. Infusion of the ketone acetoacetate increased
neuronal survival and increased brain levels of ATP in an animal
model of glutamate toxicity [137]. Ketogenic diets have also been
shown to reduce brain oxidative stress in animal models of
glutamate toxicity and MS. BHB infusion in an animal model of
glutamate toxicity showed increased neuronal survival and
decreased lipid peroxidation [138]. In an animal model of MS, a
ketogenic diet reversed hippocampal atrophy and periventricular
lesions, decreased inflammatory cytokines and chemokines, and
ROS production [136]. Ketogenic diets have also shown anti-
apoptotic and other neuroprotective effects in animal models of
hypoxia/ischemia and glutamate toxicity. Ketogenic diets and BHB
infusion reduced the area of infarct in animal models of ischemia
[139,140]. A ketogenic diet and BHB infusion upregulated HIF-
1alpha and increased levels of the anti-apoptotic protein bcl-2
[139]. In a model of cardiac arrest-induced cerebral hypoxia/
ischemia a ketogenic diet eliminated seizures, decreased myo-
clonic jerks, and completely prevented any neurodegenerative
changes [141,142].

Together, these animal and human studies suggest that ketones
can increase oxidative substrates, bypass mitochondrial respira-
tion defects and upregulate mitochondrial biogenesis. Ketogenic
interventions have the ability to reduce oxidative stress by
decreasing the production of ROS, increasing cellular antioxidants,
and upregulating stress response genes. Ketogenic diets prevent
apoptosis by reducing pro-apoptotic proteins and increasing anti-
apoptotic proteins. Ketogenic diets may also have many other
pleiotropic neuroprotective effects such as the reduction of brain
inflammation, which may be beneficial for the treatment of AD and
a wide range of other neurological disorders.

5. Conclusion

We conclude that supporting and improving brain mitochon-
drial respiration constitutes a promising neurotherapeutic princi-
ple; and propose three different interventional approaches to
improve brain mitochondrial respiration based on pharmacology
(e.g. low-dose MB), photobiomodulation (e.g. transcranial LLLT)
and nutrition (e.g. ketogenesis) interventions. The reviewed
studies using these three specific interventions provide compelling
evidence to suggest that redox-mediated bioenergetic improve-
ment of brain mitochondrial respiration may be useful for further
research and treatment of AD and other neuropsychological
disorders. This targeted neurotherapeutic principle should be part
of a more holistic treatment strategy that seeks to optimize (a) the
context of the brain (e.g. aerobic exercise, rehabilitation, cognitive
therapy), (b) the redox-energy equilibrium through increases of
energy availability (e.g. cardiovascular risk factor reduction), and
(c) improve mitochondrial respiration and reduce the pro-oxidant
tendencies of neurobiological systems (e.g. low-dose MB, tran-
scranial LLLT, ketogenic diet). Likewise, other exogenous or
endogenous antioxidants and other ketogenic interventions such
as medium-chain triglycerides or ketone esters should be
therapeutic in a wide range of neurologic diseases because they
can improve the energetic capacity of neural cells. The crossroads
between pharmacological intervention with low-dose MB, modern
photobiology with low-level lasers and LEDs, and nutritional
ketogenic interventions may lead a new direction of bioenergetics
research and treatment of AD and other neuropsychological
disorders featuring cognitive impairment and neurodegeneration.
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